KEY FEATURES maltcross

- High power handling: 1.000 W program power
- 2,5" copper wire voice coil
- Malt Cross ${ }^{\circledR}$ Cooling System
- Low power compression losses
- High sensitivity: 98 dB
- FEA optimized magnetic circuit
- Aluminium demodulating ring

TECHNICAL SPECIFICATIONS

Nominal diameter	380 mm	15 in8Ω
Rated impedance		
Minimum impedance		6,9 Ω
Power capacity ${ }^{1}$		$500 \mathrm{~W}_{\text {AES }}$
Program power ${ }^{2}$		1.000 W
Sensitivity	98 dB 1 W	/ 1m@ Z_{N}
Frequency range		- 4.000 Hz
Recom. enclosure vol.	60 / 150 I	2,1/5,2 ft^{3}
Voice coil diameter	$63,5 \mathrm{~mm}$	2,5 in
Bl factor		18,3 N/A
Moving mass		$0,098 \mathrm{~kg}$
Voice coil length		19,5 mm
Air gap height		$9,5 \mathrm{~mm}$
$\mathrm{X}_{\text {damage }}$ (peak to peak)		40 mm

- Waterproof cone treatment for both sides of the cone
- Extended controlled displacement: $\mathrm{X}_{\text {max }} \pm 8 \mathrm{~mm}$
- 40 mm peak-to-peak excursion before damage
- Weight 6,2 kg
- Optimized for 2 or 3 way PA systems and line array for utlimate professional applications

THIELE-SMALL PARAMETERS ${ }^{3}$

Resonant frequency, f_{s}
46 Hz
D.C. Voice coil resistance, $\mathbf{R e}_{\mathrm{e}}$

5,7 Ω
Mechanical Quality Factor, $\mathbf{Q}_{\mathrm{ms}} \quad 8$
Electrical Quality Factor, $\mathbf{Q}_{\text {es }} \quad 0,49$
Total Quality Factor, $\mathbf{Q}_{\text {ts }} \quad 0,46$
Equivalent Air Volume to $\mathbf{C}_{\mathbf{m s}}, \mathbf{V}_{\text {as }} \quad 131,5$ I
Mechanical Compliance, Cms $_{\text {m }}$
Mechanical Resistance, $R_{m s}$
Efficiency, η_{0}
$120 \mu \mathrm{~m} / \mathrm{N}$
$3,5 \mathrm{~kg} / \mathrm{s}$
2,5 \%
Effective Surface Area, $\mathbf{S}_{\boldsymbol{d}}$
Maximum Displacement, $X_{\text {max }}{ }^{4}$
0,088 m²

Displacement Volume, V_{d}
8 mm
$704 \mathrm{~cm}^{3}$
Voice Coil Inductance, $\mathrm{L}_{\mathrm{e}} \quad 1,1 \mathrm{mH}$

[^0]${ }^{3}$ T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working
for a short period of time)
${ }^{4}$ The $X_{\max }$ is calculated as $\left(\mathrm{L}_{\mathrm{vc}}-\mathrm{H}_{\mathrm{ag}}\right) / 2+\left(\mathrm{H}_{\mathrm{ag}} / 3,5\right)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height. www.beyma.com

Note: On axis frequency response measured with loudspeaker
standing on infinite baffle in anechoic chamber, 1W @ 1m

MOUNTING INFORMATION

Overall diameter
Bolt circle diameter

Baffle cutout diameter:

- Front mount	$349,5 \mathrm{~mm}$	$13,8 \mathrm{in}$
Depth	170 mm	$6,7 \mathrm{in}$
Net weight	$6,2 \mathrm{~kg}$	$13,7 \mathrm{lb}$
Shipping weight	$7,2 \mathrm{~kg}$	$15,9 \mathrm{lb}$

DIMENSION DRAWING

[^0]: Notes:
 ${ }^{1}$ The power capaticty is determined according to AES2-1984 (r2003) standard.
 ${ }^{2}$ Program power is defined as power capacity +3 dB .

